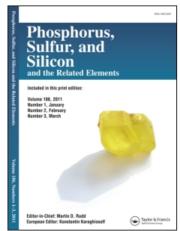
This article was downloaded by:


On: 29 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3W, LW

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

THE ASSIGNMENT OF ACYCLIC STEREOISOMERS. 11. CONFORMATIONAL ANALYSIS OF 3-PHOSPHONYL-2-BENZOYLAMINOPROPIONIC ACID METHYL-ESTERS

M. Dargatz^a; C. Preussler^a; K. Kellner^a; E. Kleinpeters^a ^a Sektion Chemie, Martin Luther Universitäat, HallelSaale, GDR

To cite this Article Dargatz, M. , Preussler, C. , Kellner, K. and Kleinpeters, E.(1990) 'THE ASSIGNMENT OF ACYCLIC STEREOISOMERS. 11. CONFORMATIONAL ANALYSIS OF 3-PHOSPHONYL-2- BENZOYLAMINOPROPIONIC ACID METHYL-ESTERS', Phosphorus, Sulfur, and Silicon and the Related Elements, 47:3,437-441

To link to this Article: DOI: 10.1080/10426509008037999 URL: http://dx.doi.org/10.1080/10426509008037999

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE ASSIGNMENT OF ACYCLIC STEREOISOMERS. II. CONFORMATIONAL ANALYSIS OF 3-PHOSPHONYL-2-BENZOYLAMINOPROPIONIC ACID METHYL-ESTERS†

M. DARGATZ, C. PREUSSLER, K. KELLNER and E. KLEINPETER‡
Sektion Chemie, Martin Luther Universität, Halle-Wittenberg, Weinbergweg 16,
DDR 4050 Halle/Saale, GDR

(Received May 26, 1989; in final form July 10, 1989)

The conformational analysis of 3-phosphonyl-2-benzoylaminopropionic acid methyl esters, which occur as diastereomeric pairs of enantiomers owing to two present chiral centres, has been managed successfully by means of ³¹P, ¹³C, ¹H and ¹⁵N chemical shifts as well as the characteristically different coupling constants between the ¹H, ¹³C and ³¹P nuclei. In this light, the diastereomers involved could be assigned readily.

Key words: NMR; phosphorus analogous aspartic acid derivatives; conformational analysis; acylic diastereomer assignment.

INTRODUCTION

Within the work on phosphorus substituted amino carbonic acids the synthesis of P-analogous aspartic acid derivatives was of special interest. During the course of this investigation a series of 3-phosphonyl 2-benzoylaminopropionic acid methylesters, 1-2, of various substituents R and R' has been prepared.²

When recording the ¹H NMR spectra of these compounds, then, in the cases of 1, the spectra of isomeric mixtures owing to two present chiral centres have been

[†] Part I, see Reference 1.

[‡] Author to whom correspondence should be addressed.

obtained. In order to assign these stereoisomers, the conformational analysis of the present flexible species ought to be included. Both topics are the object of the present paper.

RESULTS AND DISCUSSION

The NMR parameters of the compounds 1-2 studied are given in Tables I and II. In Table III, the free and associated N-H vibrations, obtained from the IR-spectra, together with the ${}^{3}J({}^{15}N, {}^{1}H)$ coupling constants, both properly indicating the stereochemistry wanted, are shown for compound 1a.

As to be seen from these NMR results two stereoisomers have been obtained only for compounds 1a and 1d. These are the erythro/threo stereoisomers owing to the adjacent chiral centres, which are still pairs of enantiomers; the latter ones, however, cannot be differentiated due to the achiral medium present. In terms of stereochemistry, these diastereomers should be named more exactly as RR/SS (threo) and RS/SR (erythro) stereoisomers. The calotte models represent them as strongly sterically strained; restricted rotation about C^2, C^3 seems possible therefrom. Additionally, due to the NH proton present, several intramolecular hydrogen bond possibilities to the ester carbonyls and the P=0, respectively, do exist. In the light of these observations just mentioned, the following rotamers about the C^2, C^3 bond for the two different stereoisomers can be achieved (only one enantiomer studied):

- (i) Both the ³¹P and the ¹⁵N chemical shifts of the erythro/threo stereoisomers are characteristically different, (e.g. **1a**: $\Delta \delta^{31}$ P = 4.1 ppm; $\Delta \delta^{15}$ N = 2.0 ppm).
- (ii) Concerning the vicinal coupling constants: only if $\bf A$ in the case of the erythro and $\bf B$ in the case of the threo stereoisomer are the preferred rotamers, the coupling constants collected do agree. The values, with reference to the gauche/anti arrangement of the nuclei involved, are in line with results obtained previously. All other suggested $\bf J$ -combinations disagree; thus, beside the erythro/threo stereoisomerism also the conformational arrangement about the $\bf C^2$, $\bf C^3$ bond is available.
- (iii) The intramolecular hydrogen bonds involved are indicated by means of associated NH valence vibrations obtained from the corresponding IR spectra.

If the C³-chiral centre disappears—comp. 2—then only the R/S enantiomeric pair, not to be distinguished in the present achiral medium, is obtained. The

TABLE I

NMR parameter, obtained from the proton spectra, of compounds 1 and 2

stereo- Chemical shifts δ (ppm)								
chemistry	H ³	H ²	R'	C¹OOMe	NH	R		
erythro	3.7	5.8	3.30	3.25	7.70	3.5-4.3		
-						1.1 and 0.9		
threo	4.0	5.5	3.22	3.37	9.05	3.4-4.1		
						1.1 and 0.7		
erythro	4.0	5.8		3.24	7.8	3.9		
						1.0 and 0.8		
erythro	3.8	5.4	3.83	3.65	n.o.	4.1		
			3.84			1.1 and 1.3		
erythro	3.9	5.7	3.26	3.24	7.8	4.49 and 4.36		
						0.8, 1.0, 1.2		
threo	3.9	5.5	3.24	3.39	9.0	4.65 and 4.36		
						0.6, 1.0, 1.1		
erythro	3.9	5.8		3.16	7.8	4.75 and 4.45		
						0.7, 1.0, 1.1, 1.2		
erythro	3.8	5.8	3.29	3.25	7.8	3.7-4.1		
•						0.7		
erythro	3.9	5.8	3.25	3.22	n.o.	3.45 and 3.2		
Ť						_		
erythro	3.9	5.8		3.65	7.0	3.4 and 3.2		
•	_					_		
		5.7		3.34	9.04	4.6		
	-					1.1, 1.2		
		5.8		3.33	9.1	3.7-4.1		
						1.1 and 1.0		
	erythro erythro erythro erythro threo erythro erythro erythro erythro erythro erythro	chemistry H³ erythro 3.7 threo 4.0 erythro 4.0 erythro 3.8 erythro 3.9 threo 3.9 erythro 3.9 erythro 3.9 erythro 3.9	chemistry H³ H² erythro 3.7 5.8 threo 4.0 5.5 erythro 4.0 5.8 erythro 3.8 5.4 erythro 3.9 5.7 threo 3.9 5.5 erythro 3.8 5.8 erythro 3.9 5.8 erythro 3.9 5.8 erythro 3.9 5.8 5.7 5.7	chemistry H³ H² R' erythro 3.7 5.8 3.30 threo 4.0 5.5 3.22 erythro 4.0 5.8 — erythro 3.8 5.4 3.83 3.84 3.84 3.26 threo 3.9 5.5 3.24 erythro 3.9 5.8 — erythro 3.9 5.8 3.29 erythro 3.9 5.8 — 5.7 — 5.7 —	chemistry H³ H² R′ C¹OOMe erythro 3.7 5.8 3.30 3.25 threo 4.0 5.5 3.22 3.37 erythro 4.0 5.8 — 3.24 erythro 3.8 5.4 3.83 3.65 3.84 erythro 3.9 5.7 3.26 3.24 threo 3.9 5.5 3.24 3.39 erythro 3.9 5.8 — 3.16 erythro 3.9 5.8 3.29 3.25 erythro 3.9 5.8 — 3.65 5.7 — 3.34	chemistry H³ H² R' C¹OOMe NH erythro 3.7 5.8 3.30 3.25 7.70 threo 4.0 5.5 3.22 3.37 9.05 erythro 4.0 5.8 — 3.24 7.8 erythro 3.8 5.4 3.83 3.65 n.o. erythro 3.9 5.7 3.26 3.24 7.8 threo 3.9 5.5 3.24 3.39 9.0 erythro 3.9 5.8 — 3.16 7.8 erythro 3.9 5.8 3.25 3.22 n.o. erythro 3.9 5.8 — 3.65 7.0 — 5.7 — 3.34 9.04		

TABLE II

NMR parameter obtained from the spectra of compounds 1-2

	Stereo-	Chemical shifts δ (ppm)						
Comp.	chemistry	C_3	C ²	R'	ОМе	\mathbf{C}_{i}	C(O)1	
1a	erythro	45.0	54.0	54.7	51.8	170.5	166.8	
(C_6D_6)	threo	46.0	55.8	54.7	52.0	172.0	170.0	
` 1 b	erythro	45.5	53.9	_	51.9	175.5	166.9	
(C_6D_6)	•							
Ìc "	erythro	45.1	53.0	55.9	52.5	170.6	167.1	
(CDCl ₃)	•			55.9				
` 1d	erythro	45.3	54.2	54.8	51.8	170.4	167.0	
(C_6D_6)	threo	44.6	56.0	54.8	52.0	170.8	166.5	
Ìe ຶ	erythro	46.2	54.1		51.7	170.3	166.9	
(C_6D_6)	•							
ìf	erythro	44.5	54.2	48.8	51.9	170.9	166.9	
(C_6D_6)	•							
ì g 🖔	erythro	44.4	53.8	54.7	51.9	170.5	166.8	
(C_6D_6)	·							
ìh	erythro	45.2	52.8	_	52.4	170.2	167.0	
(CDCl ₃)	•							
` 2a ″		41.0	51.8	_	51.6	171.0	167.0	
(C_6D_6)								
` 2 b		41.5	51.3		51.9	170.5	166.8	
(C_6D_6)								

n.o. = not obtained

TABLE III

IR data of the scelecton vibrations and the ³J(¹⁵N, ¹H³) coupling constants of the stereoisomers of compound 1a

Stereoisomer	Degree of association	$ ilde{v}_{ m NH}$	ν̄ _{CO(Me)}	$\tilde{v}_{P=O}$	ν̃ _{(N)CO}	³ J(¹⁵ N, ¹ H ³) (Hz)
erythro	free	3440	1760	1256	1676	3
	assoc.	3328	1740			
threo	free	_	1760	1252	1676	3
	assoc.	3340	1740	1238		

preferred conformer, however, is identical with B due to the ${}^3J({}^{31}P, {}^{1}H) = 37.3 \text{ Hz}$ and the ${}^3J({}^{31}P, {}^{13}C) < 2 \text{ Hz}$ as well.

With these assigned conformers in hand, the ¹H NMR spectroscopic behaviour of the two stereoisomers, becomes quite clear.

- (i) In A the carboxyester methyl group is situated near to the C^3 -phenyl substituent and, owing to steric reasons, is in the shielding area of the anisotropy cone. Because of no such possibility in B, the ester methyl in conformer A is high field shifted by 0.12 ppm.
- (ii) Inversely, the phosphonyl alkyl groups are in **B** under the same influence, but of the NHCO-phenyl substituent, and are high field shifted accordingly.
- (iii) The low field shift of the NH proton in **B** (1a: $\delta_{NH} = 9.05$ ppm) compared to **A** (1a: $\delta_{NH} = 7.70$ ppm) is due to the different intramolecular association to the ester carbonyl and the P=O function, respectively.

The presence of enantiomers (RR/SS and RS/SR) for the different stereoisomers has been studied by means of optically active Eu(HFC)₃† LIS reagent. With increasing amounts, the sharp methyl signals are splitted. Racemic mixtures of the enantiomers are present because the ratio of the enantiomers is 1:1 and no optical rotation obtained.

EXPERIMENTAL

The NMR spectra have been recorded using a Bruker WP 200 NMR spectrometer (¹H at 200.13 MHz, ¹³C at 50.327 MHz, ³¹P at 81.026 MHz and ¹⁵N at 20.282 MHz) and the chemical shifts referenced to TMS (¹H and ¹³C), 85%ic phosphoric acid (³¹P), or CH₃—NO₂(¹⁵N). Low field shifts according to the standards mentioned, have positive sign. The IR spectra have been recorded using a VEB Carl-Zeiss Jena M 80 IR spectrometer. For the NMR-measurements the samples were dissolved in deuterated benzene, for the IR-measurements in benzene.

REFERENCES

- 1. E. Kleinpeter, R. Meusinger and R. Borsdorf, Magnet. Reson. Chem. 25, 990 (1987).
- 2. C. Preussler, Thesis, Martin Luther University, Halle/S., 1988, publication in preparation.
- 3. D. G. Gorenstein, Progr. NMR Spectr. 16, 1 (1983).
- J. G. Verkade and L. D. Quinn Phosphorus-31 NMR spectroscopy in stereochemical analysis, VCH Publishers 1987.
- J. L. Marshall Carbon-Carbon and Carbon-Proton NMR couplings, Verlag Chemie Int. Inc. 1983.
- 6. M. Karplus J. Amer. Chem. Soc. 85, 2870 (1963).
 - † Eu(HFC)₃ = tris-(3-(Heptafluoropropylhydroxy-methylene)-D-camphorato) Eu (III).